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Binary pulsars as probes of relativistic gravity

By TaisavrLT DAMOUR

Institut des Hautes Etudes Scientifiqgues, 91440 Bures sur Yvette, France, and
Département d’Astrophysique Relativiste et de Cosmologie, Observatoire de Paris,
Centre National de la Recherche Scientifique, 92195 Meudon Cedex, France

Until now, most experiments have succeeded in testing relativistic gravity only in its
extreme weak-field limit. Because of the strong self-gravity of neutron stars,
observations of pulsars in binary systems provide a unique opportunity for probing
the strong-field régime of relativistic gravity. The two basic approaches to using
binary pulsar measurements as probes of relativistic gravity are reviewed: the
phenomenological (‘parametrized post-keplerian’ formalism) and the alternative-
theory approach (multidimensional space of possible theories). The experimental
constraints recently derived from the actual timing observations of three binary
pulsars are summarized. General relativity passes these new, strong-field tests with
complete success.
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The discovery of pulsars (Hewish ef al. 1968) has had a profound impact on our view
of relativistic gravity. It is true that general relativity awoke in the early sixties, out
of a long dormant stage (1920-60) under the combined revitalizing influences of new
experiments (starting with the one of Pound and Rebka in 1960), the discovery of
new astrophysical objects (quasars, cosmic microwave background...) and new
theoretical ideas (gravitational waves, black holes...) However, the discovery of
pulsars (notably after the identification of a fast pulsar at the centre of the Crab
nebula) brought the first experimental evidence for the existence of astrophysical
objects (neutron stars) which needed a relativistic theory of gravity for their
description. When one compares the (relativistic) surface gravitational potential
of a 1.4M, neutron star (GMyg/c*®Rys~ 0.2) with those of an ordinary star
(GMy/c*R o ~ 2x107%) and of a black hole (GMyy/c* Ry = 0.5), one realizes that the
observation of neutron stars is our only present handle on the strong-field régime of
relativistic gravity. (Indeed, there is still no direct experimental evidence for the
existence of black holes.) However, an isolated pulsar does not seem to be a very
useful laboratory for studying strong-gravitational-field effects. Indeed, on the one
hand the experimental data do not give access to the mass of the rotating neutron
star, and on the other hand the strong-field effects will be time independent, and
difficult to disentangle from the (poorly known) intrinsic features of the pulsar
emission mechanism. I will not discuss here the use of isolated pulsars as probes of
weak-field (Solar System) relativistic gravity and of very low frequency gravitational
waves (see Taylor, this symposium).

In view of the above, we are very fortunate that Hulse & Taylor (1975) discovered
the existence of ‘binary pulsars’, i.e. of pulsars members of gravitationally bound
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136 T. Damour

binary systems. Indeed, in these systems the orbital motion of the pulsar gives rise
to a rich array of signatures in the observed times of arrival (ToAs), and thereby give
us many handles on the relativistic gravitational interaction of two strongly self-
gravitating bodies. (I will often assume, for definiteness, that one is considering
binary pulsar systems where the unobserved companion is another neutron star. This
assumption is not at all crucial for the discussion of strong-field tests below.)

Let us recall that, up to the discovery of binary pulsars, and apart from the
qualitatively fascinating but quantitatively poor confirmations of general relativity
coming from cosmological data, the only available testing ground for relativistic
gravity was the Solar System. There, the years 1960-80 have been a period of
intensive research in experimental gravity. From the experimental point of view, the
success of this activity was due to the availability of new, high-precision technologies:
e.g. the Mossbauer effect, radar and laser ranging to Solar System bodies, atomic
clocks, ete. From the theoretical point of view, the conception and interpretation of
new tests of relativistic gravity was greatly assisted by the existence of continuous
classes of alternative (i.e. non-einsteinian) relativistic theories of gravitation. Indeed,
as in ordinary life where you take better notice of the specific properties of an object
when it is compared and contrasted with something else, the specific structure of
Einstein’s theory can be better understood when contrasted with alternative gravity
theories. From that point of view, the possibility of embedding Einstein’s theory
within the theoretically well-motivated one-parameter family of scalar-tensor
theories of gravitation due to Jordan (1949, 1955, 1959) Fierz (1956), and Brans &
Dicke (1961) has been quite useful. Very useful also has been the development of the
parametrized post-newtonian (pPN) formalism (Eddington 1922; Nordtvedt 1968;
Will 1971; Will & Nordtvedt 1972). This formalism represents Einstein’s theory as
one particular point within a multi-dimensional space of alternative theories. Each
dimension in that space (i.e. each parameter of the PPN formalism: y, 5,8, a;, &, ...)
represents a ‘direction’ in which a very generic alternative theory might differ in its
weak-field predictions from general relativity. The intensive, multi-pronged effort in
Solar System experimental gravity of the period 1960-80 can be summarized by
saying that, within the assumptions of the PPN framework (notably the absence of
any specific length scale in the gravitational interaction), the limiting régime of weak
and quasi-stationary gravitational fields has been fairly completely mapped out at
the first post-newtonian level (i.e. when taking into account fractional corrections of
order (v/c)® & GM/c*R to a newtonian description of gravity), and found to agree
with general relativity within a fractional accuracy of about 2 x 1072 (for reviews see
Will 1981, 1992). In technical terms, all the PPN parameters measuring a possible
deviation from general relativity, i.e. y—1, f—1, §, o, o, ..., have been found to be
smaller, in absolute value, than 2 x 107? (the only possible exceptions concern bizarre
parameters ({;) that are not expected to come out of any decent theory).

In spite of their impressive quantitative value, Solar System tests have an
important qualitative weakness: they say a priori nothing about how the ‘correct’
theory of gravity might behave in presence of strong gravitational fields, such as near
a neutron star. And indeed, the PPN formalism has provided specific examples of
theories (e.g. Rosen’s bimetric theory) which coincide with general relativity in the
post-newtonian limit while leading to very different predictions in the strong-field
and/or rapidly varying-field régimes (Will 1981). (The tensor-multiscalar theories
discussed below provide infinitely many other examples of such theories.) In view of
this situation, it is important to assess, in a detailed manner, to what extent the
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Binary pulsars as probes of relativistic gravity 137

observation of binary pulsars can probe new régimes of relativistic gravity left
unprobed by Solar System experiments.

Immediately after the discovery of the first binary pulsar PSR 1913+ 16 (Hulse &
Taylor 1975), it was pointed out by several authors (Damour & Ruffini 1974;
Esposito & Harrison 1975; Barker & O’Connell 1975; Hari Dass & Radhakrishnan
1975; Zel’dovich & Shakura 1975; Smarr & Blandford 1976) that the ‘magnetic’
aspects of gravity might be detectable in the observation of binary pulsars
(‘spin—orbit coupling’). (Note that, although one can rightfully argue that
‘gravitomagnetism’ has been indirectly probed in several Solar System experiments,
it seems important to have a more direct evidence of its reality, especially in the
strong-field context of a spinning neutron star.) Actually PSR 1913+ 16 has been
somewhat disappointing on this account (see, however, Weisberg et al. 1989), but the
analysis summarized below show that PSR 1534412 should soon fulfil our
expectations. Still at the time of the discovery of PSR 1913 + 16, it was also pointed
out (Esposito & Harrison 1975; Wagoner 1975) that gravitational radiation reaction
effects, though extremely small (about 107 times the main 1/R? gravitational
interaction), should become observable as they accumulate with time. As is by now
well known, the effect of gravitational radiation reaction on the secular change of the
orbital period has indeed been observed by Taylor and collaborators (see Taylor &
Weisberg 1989; Taylor 1992, and references therein). The report of this observation
in December 1978 (Taylor et al. 1979) has spurred a lot of theoretical work on
gravitational radiation reaction effects in gravitationally bound systems (for reviews
see Will 1986 ; Damour 1987). Indeed, after the announcement that these effects have
been seen, many theorists realized that the theoretical formula due to Peters &
Mathews (1963) used to estimate the effect had been derived only heuristically, and,
moreover, only for weakly self-gravitating systems. In the end, more rigorous
methods (especially an exhaustive analysis of the general relativistic dynamics of
binary systems of strongly self-gravitating bodies (Damour & Deruelle 1981;
Damour 1982, 1983)) succeeded in deriving the general relativistic prediction for the
orbital period change P, in binary systems of neutron stars. This prediction has
the form of an explicit mathematical formula relating P, to the orbital period P,, the
eccentricity e and the inertial masses of the pulsar and its companion, m; and m,.
Introducing the notation

M=mi+m,, X,=m/M, X,=m,/M=1-X,,

n=2n/P,, P,e)=1+%e?+3%",
this formula reads

PSR, m,) = — (1921/5¢%) X, X,(GMn)s Py(e) /(1 —e2)i. (1.1)

The result (1.1) formally coincides with the previously derived heuristic one, but,
thanks to the new derivations, one has learned a lot about how strong-field effects in
general relativity get renormalized away in the definition of the inertial masses m,
and m, (these masses include self—grawty contributions which amount to about 15 %,
i.e. 30 times the present accuracy in the measurement of P, !).

To compare the theoretical predlctlon (1.1) with the observed orbital period
change P2 one needs two other pieces of information enabhng one to compute the
values of the two masses m, and m,. (Moreover, the precision on P3* has become so
good that it is now necessary to correct for the small combined effeet of Galactic
acceleration and proper motion on the observable period change (Damour & Taylor

Phil. Trans. R. Soc. Lond. A (1992)
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1991).) Fortunately, the fitting of the arrival times of PSR 1913416 to a
phenomenological, i.e. theory-independent, timing model (BT +, introduced in
Damour & Taylor (1992) as an upgraded form of the original model of Blandford &
Teukolsky (1976), see below) allows one to extract from the pulsar measurements,
besides the expected ‘Keplerian’ parameters (notably, P,, ¢, and the projected semi-
major axis of the pulsar orbit x = a,sini/c), three ‘post-keplerian’ parameters: the
secular change of the orbital period P,, but also the secular advance of the periastron
o, and a time dilation parameter y (not to be confused with the PPN parameter
denoted by the same letter). The general relativistic predictions for @ and y as
functions of the keplerian parameters n = 2n/P, and e, and of the masses read

@%®(my, my) = (3n/(1—e2)) (GMn/c?), (1.2)
YR (my, m,) = (e/n) X,(1+X,) (GMn/c). (1.3)

In graphical terms, the simultaneous measurement of the three post-keplerian
parameters @°, y°" and P{" defines, when interpreted within the framework of
general relat1v1ty, three curves in the m,, m, plane, defined by the equations

R (my, my) = 6005, YR (my,my) = YO, PER(my,my) = PP, (1.4a-—c)

(When taking into account the finite accuracy of the measurements these curves
broaden to three strips in the mass plane.) Equations (1.1)—(1.4) thereby yield one
test of general relativity, according to whether the three curves meet at one point,
as they should. As is discussed in detail in Taylor (this symposium), general relativity
passes this test with complete success (at the accuracy level 5x 107%, given by the
present width of the P, strlp)

This beautiful success raises at the same time some questions. As P§® is physically
due to the radiative structure of the general relativistic gravitational interaction, one
is certainly entitled to view the & —vy— P, test as a convincing experimental evidence
for the existence of gravitational radiation. However, the rigorous derivations of PS®
show that the full strong-field structure of general relativity plays also an essential
role in determining the simple (weak—field-like) formula (1.1). The same remark
applies to the two other formulas (1.2) and (1.3). The validity of these remarks is
clarified by using the same methodology which has proven to be so useful in the Solar
System. Namely, instead of considering general relativity as an isolated theory, one
contrasts it with alternative theories which differ both in their strong-field and their
radiative structures. This methodology has been applied to the w—y— P, test by
Eardley (1975), Will & Eardley (1977) and Will (1981). In particular, it was found
that Rosen’s bimetric theory (which has the same post-newtonian limit as general
relativity) fails the test by several orders of magnitude (besides predicting an
opposite sign!) because of the interplay between strong -field and radiative effects.
However, this shows also that the &—y—P, test is a mixed test which combines
strong-field and radiative effects in an indistinet way, so that one cannot logically
conclude, when the test is satisfied, that both the specific strong-field and radiative
predictions of general relativity have been independently confirmed. In fact,
examples of theories have recently been constructed (Damour & Esposito-Farese
1992) which can pass both the Solar System tests and the & —vy — P, test, while still
differing markedly from Einstein’s theory because of strong self-gravity effects in the
pulsar and its companion.

The mixed nature of the & —y— P, test in PSR 1913+ 16 raises the question to
know whether it is possible to extract other tests of relativistic gravity from binary

Phil. Trans. R. Soc. Lond. A (1992)
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Binary pulsars as probes of relativistic gravity 139

pulsar measurements, specifically tests that probe the quasi-stationary, strong-field
aspects of the gravitational interaction. The possibility to extract from binary pulsar
timing data other strong-field tests has been pointed out by Damour & Deruelle
(1986) and Damour (1988). Recently, Damour & Taylor (1992) have tackled this
problem in a more general and comprehensive manner. Among the new features of
the latter work let us mention: (i) pulse-structure data are considered on par with
timing data, (ii) spin-orbit and aberration effects are discussed in detail, (iii) the
practical availability of the new tests is given a quantitative answer by studying the
‘measurability ” of the corresponding phenomenological parameters. In the following
sections, I summarize the results of Damour & Taylor (1992). In particular, I follow
them in distinguishing carefully the two basic possible approaches to analysing
pulsar data: a phenomenological approach (PP formalism; §2 below) or a theory-
dependent approach (§3 below). Finally, Taylor et al. (1992) have recently applied
the methodology of Damour & Taylor (1992) to actual binary pulsar data, and have
succeeded in extracting from the timing data of the newly discovered binary pulsar
PSR 1534+ 12 (Wolszczan 1991) two new tests of the quasi-stationary strong-field
régime of relativistic gravity, without mixing of radiative effects. I outline their
results in §4 below.

2. Phenomenological approach to binary pulsar tests (PPK formalism)
(a) Phenomenological analysis of timing data

The presentation of the &—y—P, test of Einstein’s theory given in equations
(1.1)—(1.4) above shows clearly that this test is done in two separate steps. First, one
extracts the observable parameters ¢°", y°** and P9 from the timing data. Second,
one interprets these three separate measurements within the framework of a specific
theory of gravitation, which predicts some explicit formulas relating the observable
parameters to the (@ priori unknown) inertial masses m; and m,. To be able to
separate these two steps it is necessary to dispose of a multi-parameter
phenomenological (i.e. theory-independent) model, ready to be (least-squares) fitted
to the actual data. Soon after the discovery of PSR 1913416, Blandford &
Teukolsky (1976) derived a phenomenological model for the timing data. The
phenomenological parameters entering this ‘BT’ model were: on the one hand, some
‘keplerian’ parameters, notably the orbital period P,, the eccentricity e, the
argument of the periastron w, and the projected semi-major axis of the pulsar orbit
x = a,sini/c, and on the other hand, some extra, ‘post-keplerian’ (PK) parameters:
a time dilation parameter v and various parameters representing possible secular
drifts of the main orbital parameters: P,, ¢, @ and #. Although Blandford &
Teukolsky had in mind only to describe within some approximation the general
relativistic dynamics of a two-body system, later work (Eardley 1975; Will 1981)
‘showed that the BT model was equally apt at describing the timing data in a very
wide class of alternative relativistic gravity theories (e.g. when considering the
predictions of more general theories within the approximation of the BT model there
are new physical effects contributing to the observable parameter y, but there is no
need to introduce new phenomenological parameters). However, the increased
precision of the observational data obtained by Taylor and co-workers motivated
several theorists to improve the timing model by including all O(v*/c?) fractional
contributions to the timing formula arising sher from the gravitational time delay
effects caused by the companion, from relativistic v?/c? effects in the orbital motion

Phil. Trans. R. Soc. Lond. A (1992)
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of the pulsar, or from aberration effects. Initial attempts to do so (Smarr & Blandford
1976; Epstein 1977, 1979; Haugan 1985) were unsatisfactory because they were
either incomplete, incorrect or because they had been derived only within Einstein’s
theory, so that they could not be used as phenomenological models able to test the
whole spectrum of relativistic gravitation theories. By contrast, Damour & Deruelle
(1985, 1986) proved that it is possible to describe all of the independent O(v%/c?)
timing effects in a simple mathematical way common to a wide class of alternative
theories. This made it possible to construct a theory-independent, phenomenological
timing model at the O(v?/c?) level.

The part of the Damour—Deruelle phenomenological timing model describing

orbital effects reads ty—t, = FIT {p%}; {p¥%7; {g"%)], (2.1a)

where ¢, denotes the Solar System barycentric (infinite frequency) arrival time, 7' the
pulsar proper time (corrected for aberration),

{5} = (P, Ty €, 05, 2} (2.1b)
is the set of keplerian parameters,
(PP} = {k,,P,,7,5,8,, 6,4} (2.1¢)
the set of separately measurable post-keplerian parameters, and
{¢"%} =1{,,4,B,D} (2.1d)

the set of not separately measurable post-keplerian parameters. The right-hand side
of (2.1a) is given by

F(T) =D T+ Ax(T)+ Ax(T)+ A5(T) + 4,(T)], (2.2a)
Ay = xsinw[cosu—e(1+8,)]+x[1—e(146,)F cos wsinu, (2.2b)
Ay = ysinu, (2.2¢)
Ay =—2rIn{l—ecosu—s[sinw (cosu—e)+(1 —ez)% coswsinu]}, (2.2d)
4, = A{sin[w+A4,(u)]+esinw}+B{cos[w+4,(u)]+ecosw}, (2.2¢)
where x=x,+2(T—1T,), e=-e,+eé(T—T,), (2.3a,b)
and where 4,(u) and w are the following functions of u,
A, (w) = 2arctan [((1+e)/(1—e)): tan Lu], (2.3¢)
w = wy+k4,(u), (2.3d)
and wu is the function of 7' defined by solving the Kepler equation
u—esinu = 2n[((T—"T,)/Py) =3P, ((T = Ty)/P,)*]. (2-3¢)

The DD model reduces to the BT one after setting 6, =8, =r=4=B=0,D =1,
and replacing wpp(7), defined by (2.3c—¢), by the simple linear function wgy =
wy+o(T —T,). After these replacements the DD parameter £ can be simply identified
with the BT parameter wP,/2n. More complete descriptions of the DD timing model
are given in Damour & Deruelle (1986), Taylor & Weisberg (1989) and Damour &
Taylor (1992).

Although the splitting of F(7') into the various contributions (2.2b—e) is a
coordinate-dependent concept, it is convenient to refer to Ay, the time of flight across

Phil. Trans. R. Soc. Lond. A (1992)
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Binary pulsars as probes of relativistic gravity 141

the orbit, as the ‘Roemer time delay’, to 4 as the ‘Einstein time delay’, to 4q as
the ‘Shapiro time delay’, and to 4, as the ‘aberration delay’, or difference between
the actual proper time of emission and the corresponding time if the pulsar
mechanism had been, say, a radial pulsation instead of a rotating beacon. In this
language 6, and d, quantify relativistic (O(v?/c?)) deformations of the orbit, &
describes both the secular precession and the short-period ‘nutation’ of the argument
of the periastron, » and s = sin¢ measure the ‘range’ and ‘shape’ of the Shapiro
delay, and 4 and B parameterize the effects of aberration on pulse timing.

Note that the DD model differs from the BT one in two ways: it introduces new
parameters corresponding to effects not included in BT, but it also associates more
effects with ‘old’ parameters than BT does. Such is notably the case for the
parameter associated with the periastron advance, denoted @ in BT and k& in DD
(with @ = kn = 2nk/P,). In the BT model, © takes into account only the secular drift
of the argument of the periastron, whereas in the DD model £ describes also the
periodic oscillations of the periastron around its linear drift. This difference
motivated Damour & Taylor (1992) to introduce an upgraded version of the BT
model, called BT+, which does not contain more parameters than BT, but which
associates with @ the full secular-plus-periodic effects of periastron advance. Fig. 2a
of Damour & Taylor (1992) shows that, in the case of PSR 1913+ 16, the BT + model
differs by less than 1 us from the DD one. This explains why the present timing
accuracy for PSR 1913+16 (about 14 ps) allows one to extract only the three
observables @, y and P,, and none of the other Pk parameters of the DD model, such
as r, s and d,. (Luckily, the situation is entirely different for PSR 1534 4 12, as shown
in fig. 2b of Damour & Taylor (1922). See below.)

It was shown in Damour & Deruelle (1986) that the PK parameters in the set (2.1d)
cannot be measured separately from those in the sets (2.1, ¢) because they can be
completely absorbed into suitable redefinitions of the other parameters. Therefore, in
the fitting process, one should set the parameters (2.1d) to some fiducial values, and
solve only for the remaining parameters. As discussed in detail in Damour & Taylor
(1992), the redefinitions of the other parameters mean that several physical effects
that cause time variations of the parameters (2.1d), can finally be detected only
through the indirect time variation they cause in the observable, solved-for
parameters (2.1c¢). (For example, the spin-orbit coupling causes changes in the
aberration parameters A and B, which are indirectly reflected in secular variations
of x°P$ and €°s.)

Summarizing the results of a phenomenological analysis of pulsar timing data, we
see that by fitting the arrival times of a binary pulsar to the DD model (2.1)—(2.3)
(in which one sets the parameters (2.1d) to some fiducial values), one can, in
principle, measure the Keplerian parameters (2.1b) and eight PK parameters (2.1¢).
The important point is that the eight Pk parameters can be measured in a
phenomenological manner, independently of the choice of a specific theory of
gravity. Within the framework of any relativistic theory, each of the eight px
parameters will be expressible as a theory-dependent function of the dynamical
keplerian parameters P,, ¢,, and x,, the two unknown inertial masses, m, and m,, and
in some cases the polar angles, A and #, of the spin axis of the pulsar. The problems
posed by the latter dependence will be treated below, after discussion of the pulse
structure parameters. (In alternative theories one will also have to assume an
equation of state for the neutron-star matter. Such an assumption is unnecessary for
most of the parameters in general relativity, because of its ‘effacement’ properties.)

Phil. Trans. R. Soc. Lond. A (1992)
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We have given in equations (1.1)—(1.3) above the theoretical predictions for @, y and
P, within the framework of Einstein’s theory. One expects that, in different theories
of gravity, the functions

PP = ftheory (. my; A, 93 Py, €, 2y ; equation of state) (2.4)

will differ markedly because of the strong-field effects linked with the pulsar and its
companion (recall the Gm/c?R =~ 0.2 for a 1.4}, neutron star). In Damour & Taylor
(1992) were presented explicit formulas allowing one to compute the functions fiheory
in a wide class of theories.

Measurement of the keplerian plus n post-keplerian parameters will determine
(when the polar angles A and # do not enter the functions (2.4)) » curves in the two-
dimensional mass plane whose shape and position depend strongly on the theory of
gravity being used. If the theory is ‘correct’ (and if the binary system is ‘clean’, i.e.
accurately represented by a simple theoretical model), the n curves should all meet
at one point. Thus the measurement of n post-keplerian timing parameters yields
n—2 tests of relativistic gravity, and, more generally, of the other ingredients of the
theoretical model of the system. We therefore conclude that in the most favourable
circumstances, binary pulsar timing data can provide up to 8 -2 =6 tests of
relativistic gravity.

(b) Phenomenological analysis of pulse structure

The structure of pulsar signals (intensity, pulse shape, linear polarization...) and
its variation with time provides a wealth of information about physical conditions in
pulsar magnetospheres and the nature of the radio emission mechanism. For binary
pulsars, pulse structure data can also contain information about gravitational
physics, because of interplays between the orbital motion and the gyroscopic nature
of the observed periodicity. In the latter category one example that was recognized
rather early was the possibility of detecting, through a secular change of pulse shape,
the relativistic precession of the spin axis of PSR 1913+ 16 because of spin-orbit
coupling (Damour & Ruffini 1974; Esposito & Harrison 1975; Hari Dass &
Radhakrishnan 1975). Another source of potentially measurable effects on pulse
structure is the aberration caused by orbital motion of the pulsar, which offers the
possibility of measuring several otherwise inaccessible parameters (Smarr &
Blandford 1976; Damour & Deruelle 1986). Damour & Taylor (1992) have recently
generalized previous work on these topics by working out a general phenomenological
‘pulse structure model” which takes into account all the O(v/c) fractional effects of
the orbital motion on the observed flux density S(v,¢), and observed linear
polarization angle y(¢) as functions of the pulsar phase ¢. The latter quantity is the
angle measuring the continuous rotation of the pulsar (after ‘correcting’ for the
aberration.) It is related to the pulsar proper time 7' of equations (2.1)~(2.3) through

A1) /21 = v T+30, T +5, T, (2.5)
where v, = 1/P,.
The ‘DT pulse-structure model’ has the following structure

Sobs(vobs’ ¢) = G[Qba {PK} ; {ﬁPK} |, (26a)
Y(¢) = Hlg: {p"}: {H™], (2.6b)

where {p"¥} denotes a new set of 11 ‘post-keplerian’ parameters, extractable in
principle from pulse structure data:

(PPEY = (N, Ak, K, 0, 6, Y, K, K, 07, 67}, (2.7)
Phil. Trans. R. Soc. Lond. A (1992)
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where A is the colatitude of the pulsar spin axis s, with respect to the triad (I, J, K)
(where K is the direction from the Earth to the pulsar, and I the direction of the
ascending node), i.e. s, = sin A cos 71 +sin A sin yJ + cos AK, (2.8)
and where I have introduced the following notation for the parameters appearing
directly in the measurable effects

Kk = (sini)"*cosy, o = cotanising, (2.9a, b)
k" = cotan Acotanicosy, o = cotanA (sing) tsiny. (2.10a, b)

Moreover, the secular changes of the combinations (2.9), (2.10) appear in (2.7), as well
as the secular change of the polarization angle at the pulse centre, y,. The explicit
formulas (2.6) will be found in Damour & Taylor (1992). Note that, contrarily to the
situation above for the timing model, the pulse-structure model depends on the
choice of a specific emission model for the pulsar in its rest frame (especially for what
concerns the polarization model (2.66); the intensity model (2.6a) requires only
weaker assumptions, e.g. axial symmetry of the intrinsic emission around some
‘magnetic’ axis).

Summarizing, both the timing and the pulse-structure measurements of binary
pulsars can be analysed in a phenomenological way, independently from the choice
of a specific relativistic theory of gravitation. This analysis is called the ‘parametrized
post-keplerian’ (PPK) formalism, and leads to the extraction from pulsar data of up
to 19 fitted ‘post-keplerian’ parameters (besides the usual keplerian ones). Eight of
them (the set (2.1¢)) can be extracted from timing data, and the remaining eleven
(the set (2.7)) from pulse-structure data (under the assumption of some pulsar
emission model). These 19 phenomenological measurements represent 15 possible
tests of relativistic gravity, in which strong-field effects play an important role. (Here
15 = 19—2—2, where, as exhibited in equation (2.4) the first subtraction accounts
for the a priori unknown masses m,, m,, while the second subtraction accounts for the
a priori unknown polar angles A, #.)

3. Alternative-theory approach to strong-field tests

Having in hands the results of the PPK analysis, it is natural to ask the following
questions. What is the theoretical significance of the tests obtained by combining
several phenomenological parameters? What are these tests teaching us about
gravity ? To answer these questions, it is necessary to generalize to the strong-field
régime the alternative-theory approach which proved so useful in the weak-field
conditions of the Solar System. As we recalled in §1 above, the idea there was to
embed Einstein’s theory within a continuous space of alternative theories. Recently,
Damour & Esposito-Farese (1992) have introduced a generic class of alternative
theories which are, on the one hand, simple enough for one to be able to compute
their predictions in the strong-field conditions of binary pulsar systems, and, on the
other hand, general enough to provide an infinite-dimensional space of possible
theories, differing by strong-field effects from general relativity.

The class of theories studied by Damour & Esposito-Farese (1992) is the class
of tensor-multiscalar theories. In these theories, the gravitational interaction is
mediated, besides the exchange of a usual einsteinian tensor field g, by the exchange

w>
of an arbitrary number of scalar fields, ¢, @ = 1, ..., n. The kinetic terms of the scalar

Phil. Trans. R. Soc. Lond. A (1992)
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fields are described by an arbitrary o-model metric, do? = y,,(¢°) dp® dg?, while their
coupling to matter is described by an arbitrary conformal factor, A*(¢*), relating the
(physical) ‘Fierz metric’ §, (measured by laboratory clocks and rods) to the
‘Einstein’ one, g%, i.e. §,, = A*@)g}, More precisely, the action describing these
theories reads,

Sior = S, +8,+8m, (3.1)
. 64 d4%’
¢t (dx
S =—tmi | o VIxGI% Yar( @) 0,9 0,9), (3.1b)
ES
S = S [V A2 9121 (3.10

The predictions of this class of theories have been worked out in (Damour &
Esposito-Farese 1992) for four different observationally relevant régimes: (i) quasi-
stationary weak fields (Solar System conditions), (ii) rapidly varying weak fields
(gravitational wave experiments), (iii) quasi-stationary strong fields (motion of
neutron stars), and (iv) the mixing of strong and radiative field effects showing up in
the gravitational radiation of systems of compact bodies (neutron stars). To
illustrate the appearance of strong-field effects in alternative theories, let us only
quote their result for the secular periastron advance in the generic theories (3.1):

linez(G%n)g{l—é(al% _Xl(alﬁ2a1)+X2(a’2ﬁla’2)}. (3.2)

U)theory(mp My) =

)
[1+ (o ot,) 61+ (o 0ty)JF

In equation (3.2), n, e, G, M, X, and X, have the same meaning as in §1 above (except
that in alternative theories one must carefully distinguish the inertial masses m,, m,
from various other ‘gravitational masses’ describing the gravitational interactions of
neutron stars). The new quantities (a; a,), (o, f,24), (o0, f; &;) entering (3.2) contain
all the strong-field effects of tensor-multiscalar theories. For instance, the definition
of (e, a,) is the following contraction with respect to the ‘internal’ scalar indices

dlnd dlnm,|[dln4 alnmz]
+ + .

The terms in gradients of the natural logarithm of the coupling function 4 (¢*) are
already present in the weak-field régime, but the terms in gradients of the logarithm
of the masses are numerically important only for strongly self-gravitating bodies. As
discussed in Damour & Esposito-Farese (1992) the strong-field effects entering o,
and a, can be expressed in terms of some dimensionless ‘compactness’ parameters.
The basic compactness parameter is

ca =—20Inm,/0InG, (3.4)

(aya) = ')’ab[ (3.3)

where A =1, 2 labels the two considered bodies. The numerical value of the
compactness ¢, depends both on the value of the mass m, and on the nuclear
equation of state used to describe the internal structure of a neutron star. Fits to
several numerically integrated neutron star models showed that one could often
approximate the dependence ¢,(m,) by a linear function,

A A
Phil. Trans. R. Soc. Lond. A (1992)
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The experimental results reported below have used a median value of & = 0.21M
for the slope of the compactness versus the mass.

As the numerical value of the compactness for neutron stars of mass m, ~ 1.4M,
is only about 0.3, i.e. a factor 3 below the ‘maximum’ compactness of 1 (formally
reached for black holes), it seems still meaningful to expand all the strong-field effects
in powers of ¢; and c,. (Note that 0.3 can still be rightfully referred to as being
‘strong-field” when it is compared with the compactness of the Sun, ¢, ~ 4 x 107¢, or
of the Earth, cg ~ 9 x 107'°.) When doing this expansion, one finds that the strong-
field effects in any observable quantity can be represented as a power series in the
compactnesses ¢, and c¢,, whose coefficients depend on the considered tensor-
multiscalar theory. This remark allowed Damour & Esposito-Farese (1992) to
generalize the (weak-field) ppN formalism to the strong-field conditions of binary
pulsar measurements. Indeed, when computing the coefficients in the compactness-
expansions of all the quantities like (o, a,), (2, f,2,), ete., which enter the predictions
of generic tensor-multiscalar theories, one finds that they form a (partly) ordered
sequence of ‘theory parameters’, denoted

Y B> Bo: B, 87, Bas (BF) -, (3.6)
the first two parameters in the list (3.6) are equivalent to the usual PPN parameters
r=L A=l n==/(+y), f=8B=1/(1+7) (3.7)

while the other ones, f,, 8,8 ... represent deeper layers of structure of the
relativistic gravitational interaction, left unprobed by existing Solar Systems tests.
All the parameters in the list (3.6) are explicitly calculable in terms of the arbitrary
functions defining a specific tensor-multiscalar theory within the class (3.1), i.e. y,,,
A(p?) and their gradients, e.g.

_ 0InA40InAd
Vi=Y 3" *a@?

(Note that all the theory parameters (3.6) are defined so as to vanish in general
relativity.) In pictorial language, each parameter in the list (3.6) represents an
independent direction away from Einstein’s theory in an infinite-dimensional space
of alternative theories of gravitation. In other words, the ‘post-pPPN’ parameters f,,
B, B ... provide a chart for the yet essentially unexplored domain of strong-field
effects (both in the motion and the radiation of systems of strongly self-gravitating
bodies).

There are two ways in which one can combine the phenomenological (PPK)
approach to binary pulsar data of §2 with the present alternative-theory approach,
with its sequence of theory parameters (3.6). The first one applies to the favourable
situation where it is indeed possible to extract, with good accuracy, a sufficient
number of PK parameters from the raw pulsar data. In that case, one can analyse
a postertort the theoretical significance of the pulsar measurements by starting from
the observed values of the PK parameters, and combining that information with the
alternative-theory predictions such as equation (3.2). This was essentially the idea
evoked above, by which the measurement of n PK parameters defines, within the
framework of each specific theory, n curves in the mass-plane. This approach is
illustrated in figure 8 of Damour & Taylor (1992) for the hypothetical case of the
measurement of the six PK parameters o, vy, Pb, r, s and d,, and of the comparison

Phil. Trans. R. Soc. Lond. A (1992)
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between general relatively and one specific tensor-biscalar theory. This approach is
conceptually simple, and easy to implement. However, it neglects the correlations
between the various observed parameters. In the case where there are strong
correlations between the various PR parameters, and where some parameters can
barely be separated from the other ones, it is better to use another approach.
Namely, if one considers a theory which depends on a certain (finite) number of
theory parameters, one can a priori replace the alternative-theory predictions for the
various PK parameters (e.g. equation (3.2)) in the DD model (2.1), and solve for the
theory parameters, instead of the PK parameters.

4. Application to actual binary pulsar measurements

The various methodologies outlined above have been applied to actual binary
pulsar measurements by Taylor et al. (1992). First, these authors have followed
Damour & Esposito-Farese (1992) in considering only a subsector of all the possible
directions in theory-space away from general relativity. More precisely, the latter
have introduced a specific two-parameter class of tensor-biscalar theories, called
T(f',8”), which describes in a rather generic way two yet unexplored directions in
theory space, independently of the already explored directions. More precisely, the
theories 7'(f’, §”) where chosen so as to coincide with Einstein’s theory in the post-
newtonian limit (this freezes the PPN directions, i.e. y, = #, = 0), and to suppress the
strong-field induced dipole radiation effects (already explored by Eardley 1975 ; Will
& Eardley 1977; Will & Zaglauer 1989). Moreover, the restriction to the simplest case
of theories containing only two scalar fields, besides a tensor one, has the effect of
freezing several possible strong-field directions (namely, one has 0 = g, = £, = ...).
Finally, these theories explore a domain in theory space spanned by the two strong-
field parameters " and f” in the list (3.6).

To give an idea of which strong-field deviations from KEinstein’s theory are
explored by the theories T(f', "), one can quote the following formulas for the
quantities (e, ot,) and (o, 8, a,) entering the new prediction (3.2) for @™oy

(g 005) = 3f' (e +¢3), (4.1a)
(a1 By0) = B[ —cy+ Py 4(c4,¢5)] +/3/2P3,6(01’ ¢y) +3p7cs. (4.10)

In equation (4.1b) P, ,(c,,c,) denotes a polynomial in the compactnesses which starts
at order ¢ and ends at order j. By inserting (4.1) into (3.2) one sees that, because of
the (afo) terms, the strong-field modifications to the general relativistic prediction
(1.2) associated with " start at order O(c), while those associated with 8" start at
order O(c?). For the precise definition of the theory 7(f’, #”) and the derivation of its
predictions relevant to binary pulsar measurements see Damour & Esposito-Farsse
(1992) and Damour & Taylor (1992).

Besides illuminating the theoretical significance, in terms of strong-field deviations,
of the various phenomenological measurements, the use of a specific family of
theories like T'(f’, f”) provides a common ground for intercomparing and combining
tests coming from observations of different pulsars. In pictorial terms, the data of
each pulsar define a certain allowed region (at, say, the 90 % confidence level) within
the space of alternative theories. Then, in the latter space, one can simultaneously
represent the tests based on different pulsar data by drawing all the corresponding
allowed regions. The ‘correct’ theory of gravity should lie in the intersection of all
the allowed regions.

Phil. Trans. R. Soc. Lond. A (1992)
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A pioneering analysis of the constraints imposed within the two-dimensional space
of theories T'(f’, #”) by various, presently available pulsar measurements has been
recently implemented by Taylor et al. (1992). They made use of: (i) 10 years of high-
quality timing observations of PSR 1913+ 16, (ii) one year of similar data for the
newly discovered binary pulsar PSR 1534412 (Wolszezan 1991), and (iii) a
previously proposed theoretical interpretation (Damour & Schifer 1991) of the
keplerian parameters extracted from several years of high-quality timing ob-
servations of the ‘non-relativistic’ binary pulsar PSR 1855409 (Ryba & Taylor
1991). Concerning the latter test, the idea of Damour & Schifer (1991) was that the
observation of a low-eccentricity long-period binary pulsar with a white-dwarf
companion (¢, < ¢,) sets a probabilistic upper bound on any possible difference in the
free-fall accelerations of a neutron star (the pulsar) and a white dwarf (the
companion) in the gravitational field of our Galaxy. The theories T4, ") predict
that the ratio of the free-fall accelerations is

a, 1+3p'ct

a, 1+3pck
when ¢, < ¢,. Therefore the e — P, PSR 1855 409 test provides an upper bound on the
magnitude of .

Concerning the analysis of the two other sets of pulsar measurements, Taylor et al.
(1992) used both the purely phenomenological (pPk) approach of §2, and the
alternative-theory approach of §3. As already mentioned, the timing measurements
of PSR 1913416 can be very satisfactorily fitted by a simple BT +model. This
means that only three PK parameters, o, y and Pb can be extracted, with any decent
accuracy, from the presently available data (see, however, fig. 2 of Taylor et al. (1992)
for the two further Pk parameters r and s). By contrast, thanks to a more ‘edge on’
position, the PPK analysis of the PSR 1534 4 12 data allowed one to extract the four
PK parameters o, vy, r and s. As said above, these four phenomenological
measurements provide 4—2 = 2 new, independent tests of relativistic gravity.
At present, the accuracy of these two new strong-field tests is not very high (e.g.
o,/r = 21%); however, numerical simulations by Damour & Taylor (1992) show
that it should steadily improve as more data become available.

Shifting from the phenomenological to an alternative-theory approach, Taylor
et al. (1992) interpreted the various pulsar data in terms of the corresponding allowed
regions they define in the two-dimensional, ', §”, space of alternative theories. The
PSR 1913+ 16 data define a thin strip (roughly located around the parabola f” =
(#')?) corresponding to the single (0.5% accurate) @ —y — P, test. The two new (low
precision) @ —y—r—s tests in PSR 1534+ 12 define a rather wide, potato-shaped
allowed region in the f',4” plane. Finally, the e—F, test in PSR 1855409
corresponds to the vertical strip —1.6 < 8 < 1.6 (90% confidence level). When
combining these three independent allowed regions, one reaches the following
conclusions. (@) The three allowed regions do admit a non-empty common
intersection, and Einstein’s theory (i.e. the point (8’, §7) = (0,0)) lies well inside this
intersection region. (b) At the 90% confidence level the post-ppN, strong-field
parameters 4 and B” are constrained to lie in a thin parabolic segment whose
projections on the f’, f” axes are roughly —1.1 < ' <1.6, —1 <" <6.

In conclusion, Einstein’s theory of gravitation has passed with complete success
several new, deep and sensitive experimental tests. Among these tests, the ones
associated with the data from PSR 1534412 and PSR 1855+ 09 concern the quasi-
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stationary strong-field régime of relativistic gravity, without mixing of radiative
effects. Moreover, numerical simulations by Damour & Taylor (1992) show that the
prospects are good for improving these tests, and extracting still new tests from
future binary pulsar measurements.
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